Smart Topology Optimization Using Adaptive Neighborhood Simulated Annealing

نویسندگان

چکیده

Topology optimization (TO) of engineering products is an important design task to maximize performance and efficiency, which can be divided into two main categories gradient-based non-gradient-based methods. In recent years, significant attention has been brought the methods, mainly because they do not demand access derivatives objective functions. This property makes them well compatible structure knowledge in digital simulation domains, particularly Computer Aided Design Engineering (CAD/CAE) environments. These methods allow for generation evaluation new evolutionary solutions without using sensitivity information. this work, a non-gradient TO methodology variation Simulated Annealing (SA) presented. adaptively adjusts newly-generated candidates based on history current uses crystallization heuristic smartly control convergence problem. If changes previous element its neighborhood improve results, factor increases newly random generated solutions. Otherwise, it decreases value recently wisely improves exploration TO. order study role various parameters algorithm, variety experiments are conducted results analyzed. multiple case studies, shown that final comparable obtained from classic As additional feature, density filter added algorithm remove discontinuities gray areas solution resulting robust outcomes adjustable resolutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulated Annealing with Advanced Adaptive Neighborhood

It was Kirkpatrick et al. who first proposed simulated annealing, SA, as a method for solving combinatorial optimization problems[1]. It is reported that SA is very useful for several types of combinatorial optimization problems[2]. The advantages and the disadvantages of SA are well summarized in [3]. The most remarkable disadvantages are that it needs a lot of time to find the optimum solutio...

متن کامل

Temperature Parallel Simulated Annealing with Adaptive Neighborhood

In this paper, a Temperature Parallel Simulated Annealing with Adaptive Neighborhood (TPSA/AN) for continuous optimization problems is introduced. TPSA/AN is based on the temperature parallel simulated annealing (TPSA), which is suitable for parallel processing, and the SA that Corana developed for continuous optimization problems. The moves in TPSA/AN are adjusted to have equal acceptance rate...

متن کامل

Parallel simulated annealing with adaptive neighborhood determined by GA

Abstract – Simulated annealing (SA) is an effective general heuristic method for solving many optimization problems. This paper deals with the two problems in SA. One is the long computational time of the numerical annealings, and the solution to it is the parallel processing of SA. The other one is the determination of the appropriate neighborhood range in SA, and the solution to it is the int...

متن کامل

Temperature Parallel Simulated Annealing with Advanced Adaptive Neighborhood

多峰性の連続最適化問題にシミュレーテッドアニーリング (SA)を適用する場合,著者らがすでに 提案している最適な受理確率を目標とする適応的近傍を持つ SA(SA/AAN)が有効である.本論文 では,並列計算機を用いて組み合わせ最適化問題を解く場合に有効な並列アルゴリズムの 1つである 温度並列シミュレーテッドアニーリング (TPSA)に SA/AAN を組み込んだ手法を提案する.提案 手法は各プロセス (プロセッサ)が担当する各温度において,適応的な近傍拡大率を持つ近傍を用い て探索するため,関数のランドスケープに適応した探索が行うことが可能である.一方,TPSAは温 度スケジュールが不要であるという特徴がある.そのため本論文で提案する手法は,温度,近傍とも に関数のランドスケープに合わせ自律的な調節を行うことができるという優れた特徴を持つことがわ かった.3 つの代表的なテスト関数...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11115257